Atrous Spatial Pyramid Pooling for Semantic Segmentation

Darren Mei
Stanford University
Stanford, CA

dmei@cs.stanford.edu

Abstract

For this project, we present a deep learning framework
that aims at solving semantic image segmentation of ur-
ban environments. To achieve this task, our deep learning
framework utilizes atrous spatial pyramid pooling. Train-
ing and evaluation is conducted on the Cityscapes dataset
[L12l], which contains a diverse set of stereo video sequences
recorded in street scenes from 50 different cities. Following
an overview of prior semantic segmentation techniques and
an implementation of SegNet, this project reviews in-depth
how atrous convolution can be applied to solve semantic
segmentation. Using the DeepLabv3 framework, numer-
ous experiments on atrous convolution structures are con-
ducted, and the final result receives a 72.53% mean loU
score on the Cityscapes validation set.

1. Introduction

In this paper, we are concerned with pixel-level se-
mantic segmentation of urban street images using Deep
Convolutional Neural Networks (DCNNSs). Pixel-wise
image segmentation is a challenging and demanding task
in computer vision and image processing. At the same
time, semantic segmentation of images is an essential task
required to make autonomous machines of the future - from
robots to self-driving cars - function. In this task, we label
regions of an image according to what is being shown.
More specifically, the goal of semantic image segmentation
is to label each pixel of an image with a corresponding
class of what is being represented. Since we are predicting
a class for every pixel in the image, this task is commonly
referred to as dense prediction.

1.1. Applications

Semantic segmentation of images has useful applications
in many areas of research and industry. Some of the most
common ones are:

Aditya Khandelwal
Stanford University
Stanford, CA

akhand@cs.stanford.edu

1. Machine vision

(a) Pedestrian and Road Segmentation
(b) Video surveillance

(c) Traffic control systems
2. Medical imaging
3. Content-based image retrieval

Although this is not an exhaustive list by any means, our
motivation to work on this important area of research has
been very much influenced by the number of different ways
our approach can be utilized in various distinct and inde-
pendent fields of work. Moreover, since image segmenta-
tion requires huge domain knowledge database that does not
currently exist for each possible class that one might find in
an image, we were curious to understand the advantages and
limitations of recent work in the area and hypothesize our
implementation of a DCNN as a solution to this problem.

1.2. Early Naive Implementations

The earliest examples of image segmentation aimed to
classify each pixel in an image using a binary thresh-
holding method. This meant that pixels above a certain
intensity threshold were classified into the same category.
More robust methods, such as k-means clustering, balanced
histogram thresh-holding, etc., were subsequently created
to provide multi-class classification capabilities. However,
since these methods rely on high-level image features and
do not take into account any contextual information, they
were poor at consistently accurate classification. Further-
more, for tackling more complex data, such as frames of a
video, or challenges, such as real-time segmentation, these
methods presented several operational and runtime chal-
lenges.

1.3. Neural Network Approach

Recent breakthroughs in the field of computer vision
have led to unprecedented success in procedural image
segmentation tasks. Fully Convolutional Neural Networks

(FCNN) [4] were proposed in 2014 to learn basic image
segmentation tasks. Learning a deconvolution network on
top of VGG-16 [/] convolutional network which consists
of deconvolution and unpooling layers was implemented
in 2015 to identify detailed structures and handle objects
in multiple scales naturally. Since then, pyramid networks
have achieved state-of-the-art semantic segmentation accu-
racy scores. For our research, DeepLabv3 [[L1]] became an
important starting point as we went ahead and introduced
several variations of the current DeepLab model in order to
benchmark and test its performance.

1.4. Problem Statement

For our project, we wanted to implement DeepLabv3 in
PyTorch and use it to test accuracy and mean IoU on im-
ages in the Cityscapes dataset. Our input consists of images
and we wanted to generate output image maps that classi-
fied each pixel in every image into one of the 19 potential
classes, as described in the Cityscapes dataset. Moreover,
after looking at some of the DeepLab results, we wanted
to experiment with the DeepLabv3 network by introduc-
ing more layers and tweaking some of the hyperparameters
to yield better results when it came to segmenting global
features in images, and provide benchmark results of these
model improvements in this paper.

2. Related Work

There are various approaches to semantic segmentation
problems, and can be broadly broken up into traditional
methods and deep learning solutions. Additionally, there
are different categories of deep learning approaches, such as
the widely adopted Fully Convolutional Network, Encoder-
Decoder Networks, and Pyramid Networks.

2.1. Traditional Methods

More traditional approaches to semantic segmentation
utilize concepts such as Decision Forests and Conditional
Random Fields. Decision Forests consist of decision trees
which have classifications at the leaves of each tree, and
are effective at both classification and clustering.[1] Condi-
tional Random Fields are a graph structure used when the
label of an input is dependent on the labels of nearby in-
puts. Since semantic segmentation typically has many pix-
els of the same class clustered in various groups through-
out the image, CRFs have been a popular way to model
the input image.[2] Additionally, they have even been used
in deep learning approaches in combination with convolu-
tional networks.[3] However, due to the slow training and
inference speeds of CRFs they have not been as common in
recent publications.

2.2. Fully Convolutional Networks

One of the first deep learning approaches to Semantic
Segmentation used an end-to-end, pixels-to-pixels convo-
lutional network.[4] With transfer learning using previous
classification networks like AlexNet and VGG net, FCNs
were able to achieve up to 62.2% mean IoU on the PASCAL
VOC dataset[S]], a common benchmark for semantic seg-
mentation. To do this, the FCN upsamples from the dense
feature maps to get an output of the exact same size as the
input. However, an issue with the FCN was brought up in
a later work known as ParseNet[6] which claimed that the
FCN model loses a more global context of the image by us-
ing small feature maps. To solve this, ParseNet normalizes
the initial feature maps and concatenates the normalization
with the standard FCN. In doing so, it better understands
features at a larger scale and also performed better with a
69.8% mean IoU on the PASCAL VOC dataset.

2.3. Encoder-Decoder Networks

Building off of FCNs, other architectures utilize a simi-
lar first half but have a more complex upsampling network
to better map pixel-wise probabilities. Successful examples
of these architectures include both DeconvNet and U-Net,
the latter of which was proposed for the medical imaging
community.[7][8] These ’encoder-decoder” networks can
also be seen as encoding information into dense feature
maps through a standard convolution network like VGG-16
and then decoding this information via unpooling and up-
convolutional layers. By adding a more complex upconvo-
lution process, it better approximates pixel-wise class prob-
abilities and can better segment an image. These architec-
tures have achieved up to 72.5% mean IoU on the PASCAL
VOC dataset.

2.4. Segnet

This project used a baseline modeled after SegNet, an-
other variation of an Encoder-Decoder Network. We chose
a PyTorch implementation of SegNet developed by Badri-
narayanan et al. at the Machine Intelligence Lab at Univer-
sity of Cambridge [9]. The main reason this baseline was
used is because other implementations like DeconvNet[7]]
have many more parameters due to their use of fully con-
nected convolutional layers. This would require additional
computational resources and time and SegNet was shown to
perform comparably.

SegNet uses a four layer “flat” architecture. Each en-
coder performs dense convolutions, ReLU non-linearity, a
non-overlapping max pooling with a 2 x 2 window and
down-sampling. Each decoder upsamples its input using
the memorized pooled indices and convolves it with a train-
able filter bank. No ReLU non-linearity is used in the de-
coder. The encoder and decoder filters are also untied to

RGB Image

Convolutional Encoder-Decoder

Pooling Indices y

I Conv + Batch Normalisation + RelU
I Pooling M Upsampling

Output

Segmentation
Softmax

Figure 1: Visualization of SegNet Layers that produce a mapping from pixels in RGB Images to Segmentation Class and
Category Labels

provide additional degrees of freedom to minimize the ob-
jective. The final layer is a softmax classifier (with no bias
term) which classifies each pixel independently.

A highlight of this baseline architecture is its ability to
produce smooth segment labels when compared with local
patch based classifiers. This is due to deep layers of feature
encoding that employ a large spatial context for pixel-wise
labelling. Both qualitative and numerical accuracy of the
SegNet for outdoor and indoor scenes is very competitive,
even without use of any CRF post-processing.

2.5. Pyramid Networks

The current state-of-the-art implementations for seman-
tic segmentation utilize pyramid pooling to identify features
at different scales.[10] This further utilizes the global con-
text of the image because more information can be captured
within these pyramid pooling layers. In PSPNet, an input to
the layer is convolved with four different scales or pyramid
levels, which are each then run through a 1x1 convolutional
layer to reduce the dimension of context representation.
By then directly upsampling these low-dimensional feature
maps, different feature scales can be concatenated to cap-
ture various sizes of objects in the image. Using this pyra-
mid architecture, PSPNet and its successor DeepLabv3[11]],
the architecture implemented in this project, are able to
achieve over 80% mean IoU on the Cityscapes Dataset.

3. Data

While there are numerous semantic segmentation bench-
marks such as the previously mentioned PASCAL VOC,
this project utilized the Cityscapes Dataset for training and
evaluation.[12] The Cityscapes Dataset consists of urban
scenes recorded in 50 different cities, and is meant to focus
on a visual understanding of complex urban street scenes.
The results are evaluated on 19 classes out of the 30 vi-
sual classes annotated due to the rarity of 11 classes in the
dataset. The annotations also occur at fine and coarse levels.
In this project we only use the fine pixel-wise annotations,
of which there are 2975 training and 500 validation images.

Although there are 1525 test images, since Cityscapes is a
benchmark these images do not have corresponding pub-
lic annotations. Each image in the dataset has resolution
1024x2048.

Figure 2: Example from the Cityscapes Dataset. The above
image is the input image, and the below image is the corre-
sponding fine annotation. Note: Although there are borders
between instances of classes that does not matter for the
purposes of semantic segmentation evaluation.

Since the Cityscapes Dataset provides semantic, in-
stance, and panoptic segmentation annotations, the ground
truth files needed to be converted from polygonal annota-
tions into semantic segmentation annotations before train-
ing. The Cityscapes Benchmark Suite[13] provides an en-
coding function which converts the original annotations into
per-pixel ground truth class encodings.

Other models utilized the coarse annotations for training,
and even augmented the dataset through random scaling and
flipping. However, for the scope of this project the 2975
training examples were deemed enough to train our model,

and no data augmentation was used.

4. Methods

Our main approach to semantic segmentation follows the
architecture described in DeepLabv3 [11], utilizing atrous
convolution and spatial pyramid pooling to extract features
at varying scales.

4.1. Atrous Convolution

Atrous convolution, also known as dilated convolution,
uses convolution filters which have a larger filter size but
only sample from select pixels.

Conv Conv Conv
kernel: 3x3 kernel: 3x3 kernel: 3x3
rate: 1 rate: 6 rate: 24
rate = 24
—
rate = 6
rate=1 -

- L L)
(1 1]
=i #H
LL]]

.

Feature map Feature map Feature map
Figure 3: Atrous convolution with kernel size 3 3 and dif-
ferent rates. Standard convolution corresponds to atrous

convolution with rate = 1.

As seen in Figure 3, atrous convolution is able to capture
contextual information at a larger scale without additional
parameters. This can also be seen in the following equation
describing the output of an atrous convolution. Given an
input feature map z and a filter w, the output y at index ¢
will look like[11]):

yli] = Zx[z + - klwlk]
k
In the above equation, r denotes the atrous rate. The atrous
rate 7 can also be seen as 1 divided by the frequency of see-
ing a nonzero element. If » = 6, then that means 1 in every
6 elements in the filter has a non-zero weight. A standard
convolution can then be seen as a special case where r = 1,
so there is no space in between each nonzero weight.

4.2. Cascaded Atrous Convolution

Similar to previously discussed works, DeepLabv3 ad-
ditionally uses an initial encoder structure to obtain fea-
ture maps of the data. Instead of using VGG-16 like
other implementations[7][5], DeepLabv3 chose to use
ResNet[14], but added atrous convolutions in some of the
blocks. Each ResNet block consists of three 3x3 convolu-
tions, with the last convolution having a stride of 2 except in

the last block. The reason for using ResNet is due to deep
networks having issues with vanishing gradients. Further-
more, by using atrous convolution and increasing the stride
in the last convolution, it is easier to capture long range in-
formation in deeper blocks. Though DeepLabv3 also goes
into more detail regarding changing the sizes of each of the
three convolutional layers in each block based on a Multi-
grid parameter, we did not focus on this method because we
wanted to pay more attention to the Atrous Spatial Pyramid
Pooling Layer. As a result, while four cascading ResNet
blocks were used in the final architecture, only one of them
utilized atrous convolution with the atrous rate set to 2.

4.3. Atrous Spatial Pyramid Pooling

One of the main differences between DeepLabv3 and
other implementations is the use of an Atrous Spatial Pyra-
mid Pooling or ASPP layer before upsampling. An Atrous
Spatial Pyramid Pooling layer is similar to the pyramid
structure discussed earlier along with PSPNet[10], except
that the convolutions are atrous convolutions. Each input
into the ASPP layer is run through multiple convolutions
of the same filter size but with varying dilation (space in
between each weight). There are two 1x1 convolutions in
addition to the atrous convolutions in the pyramid, because
one of the 1x1 convolutions is on the global pooling result
of the input to maintain the fine annotation details. The
padding for each convolution is calculated as follows to en-
sure that the output shape matches the input shape. While
for a kernel size of 3 the padding remains the same as the
dilation parameter, for the other kernel sizes used in this
project it needed to be calculated. If the input window size
is defined as W, the filter size as F', the padding as P, and
the stride as .9, then the output size O is defined as:

(W—F+2P)/S+1=0

For Atrous Convolution, the filter size F' can also be calcu-
lated in terms of the kernel size K and dilation parameter D:

F=(K-1)*xD+1

Since the input window size should be equal to the output
window size and the stride is set to 1, then we calculated
the necessary padding for a given kernel size and dilation as:

(K—-1)*D
2
With this structure, features at varying distances from

each other are still related in this layer, and will have a
greater impact on the final pixel-wise prediction.

P:

4.4. Model Architecture

As seen in Figure 4, the final DeepLabv3 architecture
receives the input RGB image, convolves it in Convl with

(a) Atrous Spatial
Pyramid Pooling
] 1x1 Conv

1 = 3x3 Conv
I
_.Pooll Blockt Block2 Block3 Block4 3x3Conv | 1x1 Conv
gl Gt
3x3 Conv
. output B 8 O -
Image Smlde - 8 16 16 _ rate=18 16

(b) Image Pooling

Figure 4: DeepLabv3 Architecture combining an initial ResNet structure with one Atrous Convolution ResNet Block with
an Atrous Spatial Pyramid Pooling layer.

64 filters of size 7, stride 2, and padding of 3. After batch
normalization, the ReLU of the output is then pooled with
a 3x3 filter with stride 2 and padding of 1. This initial con-
volutional and pooling layer is then fed into the first of the
four ResNet blocks. Each ResNet block consists of vary-
ing numbers of layers, each of which do three convolutions
in sequence. The first convolution has a 1x1 filter, which
is then batch normalized and fed through a filter of size
3x3. This is then batch normalized and sent through an-
other convolution with a 1x1 filter which also expands the
output dimension by a factor of 2. After a final batch nor-
malization, the output is then either added with the original
input to complete the skip connection, or with a downsam-
pled version of the input if the output dimension is less than
the input dimension.

During this project, we utilized the ResNet-101
structure[[14]] with pretrained weights on ImageNet[15] in
order to speed up the training process. Since the weights for
Block1-Block4 in Figure 4 were pretrained on ImageNet,
most of our attention was to on the implementation of the
ASPP layer. As will be discussed in the next section, we
altered various portions of the ASPP layer to determine the
best possible configuration.

Finally, we used Pixel-wise Cross Entropy Loss for this
model. Pixelwise cross entropy loss is calculated as the log
loss summed over all 19 classes as such:

Loss = — Z Ytrue 1Og(ypred)

classes

Since the Cityscapes dataset disregarded classes that did
not appear often enough, then the Pixel-wise Cross Entropy
Loss is a valid loss function. This is because by evaluat-
ing predictions for each pixel vector (across the 19 classes)
individually, we are equally learning across every pixel in
the image. Other implementations also assumed there was
not a class imbalance in the Cityscapes dataset, and used
Pixel-wise Cross Entropy Loss as well.

5. Experiments

We conducted several experiments by introducing varia-
tions to the DeepLabv3 model. The task of all of these ex-
periements was to understand how applying these transfor-
mations changed the mean IoU score which was the evalua-
tion metric that we were most interested in. For each model
architecture we evaluated on, we found the average IoU ra-
tio for each of the 19 classes across the validation set. Then,
the mean IoU score was calculated by averaging the individ-
ual IoU scores for each of the 19 classes.

5.1. Evaluation

In order to evaluate our DCNN implementations, we
used benchmarking metrics as provided by the Cityscapes
Dataset Challenge [12]. To assess performance, we rely on
the standard Jaccard index, commonly known as the PAS-
CAL VOC IoU metric.

True Pos.

IoU =
© True Pos. + False Pos. + False Neg.

5.2. Baseline Model: SegNet

As a baseline model for our task, we used a PyTorch im-
plementation of SegNet that we finetuned for our dataset.
Our task was to classify all pixels in each image cor-
rectly into one of 19 classes (as provided in the Cityscapes
dataset) and we were evaluating on the mean IoU metric,
as described above. For our loss function, we used Cross-
Entropy loss, and for optimization we used Stochastic Gra-
dient Descent. We evaluated this model after running it for
7500 iterations. While SegNet was able to produce smooth
classifications for all pictures, the mean IoU of generated
image maps compared to the ground truths was 0.4379.
Since this mean IoU score is comparable to SegNet imple-
mentations evaluated on datasets like the Pascal VOC, we
were satisfied with the results and were also confident that
our DeepLabv3 variations would perform much better on
the Cityscapes dataset.

Method ‘ Road Sidewalk Building Wall Fence Pole T.Light T.Sign Veg. Terr Sky Ped. Rider Car Truck Bus Train Mbike Bike ‘ mloU
SegNet | 94.99 69.19 8572 2532 3257 4457 0.06 50.04 83.41 4827 8946 5998 001 8477 0.0 0.04 0.0 0.0 5874 | 43.79
DL-1 95.83 76.83 8944 4545 5029 48.74 5533 66.23 89.67 5548 8696 74.17 4156 91.18 4136 67.69 5135 4472 69.26 | 6543
DL-2 | 96.99 78.33 89.56 4146 4721 4860 56.58 68.83 90.39 58.07 87.70 75.67 51.53 92.09 52.53 70.78 4390 56.57 71.75 | 67.29
DL-3 | 96.19 75.76 88.01 36.10 4143 4400 41.27 6580 89.43 5052 8825 7241 37.74 89.56 4496 5504 3597 4429 61.98 | 60.99
DL-4 | 93.97 76.18 87.82 3947 4642 41.78 4538 5568 8586 5552 76.62 7039 46.66 89.16 4545 5775 1883 3390 67.20 | 59.69
DL-1* | 97.75 82.14 9133 51.68 57.82 5327 64.12 7330 9145 60.69 9322 7831 56.69 93.79 67.40 80.83 49.75 59.86 74.71 | 72.53

Table 1: Per-class results on Cityscapes Validation Set. All DeepLabv3 models listed were trained for 40 epochs except for

DL-1%*, which was trained for 150 epochs. The best IoU scores amongst the first four methods are bolded. Note: T.

Light=Traffic Light, T.Sign=Traffic Sign, Veg.=Vegetation, Ped.=Pedestrian

5.3. DeepLabv3: Original Implementation

The original ASPP layer of DeepLabv3 follows the ar-
chitecture defined in Figure 4. For our implementation, we
trained with a mini-batch size of 8 and 16. While a mini-
batch size of 16 trained faster (albeit requiring additional
computational resources), we found that a mini-batch size
of 8 received a better validation mean IoU, due in part to a
larger batch size resulting in worse generalization.[16]

We found the ideal base learning rate to be 0.007, and
throughout training we also used a learning rate decay
schedule. Since the base learning rate is 0.007, the learning
rate for a given iteration ¢ out of a max number training
iterations m is defined as:

Learning Rate = 0.007 * (1 — i)o.9
m

5.4. DeepLabv3: Additional Models

In addition to training the original model of DeepLabv3,
we wanted to experiment with various ASPP layers. This
stems from wanting a better combination of dilation and fil-
ter sizes for the atrous convolutions to capture important
contextual information for the Cityscapes Dataset.

We implemented DL-2, which is a variation of DeepLab,
where the dilations for ASPP layers were changed to 3, 6
and 9 respectively. Since the dilation sizes were decreased,
we hypothesized that this would result in better accuracy
for finer details in images, such as motorbikes, traffic lights,
and pedestrians.

Furthermore, we implemented a filter size of 4 instead of
the default 6, and tweaked the dilations in successive ASPP
layers to 8, 16, 24. The idea here was similar to DL-2. Since
we were interersted in the final validation set results, we
wanted to understand the trade-offs of having lower filter
and dilation sizes for ASPP layers than was proposed origi-
nally.

Finally, we decided to add an additional ASPP layer to
experiment with the learn more about the information that is
being encapsulated by each layer. Our hypothesis here was
that having more ASPP layers will improve the mean IoU
score. Therefore, we tested DL-4 with atrous convolutional
layer dilations of 6, 12, 18, and 24.

5.5. Quantitative Results

In the results shown in Table 1, the model DL-1 corre-
sponds to the original architecture of the DeepLabv3 model
discussed earlier. DL-2 is a similar DeepLabv3 model ex-
cept with dilations of 3, 6, and 9. DL-3 corresponds to the
DeepLabv3 model with a filter size of 4 and dilations of 8,
16, and 24. Finally, DL-4 is the model with 4 atrous convo-
lutions, each with a filter size of 3 and with dilations 6, 12,
18, and 24.

Besides viewing the mean IoU on the 500 validation
samples, we also evaluated each model on the 2975 training
samples. As seen in Table 2, it is clear that after 40 epochs
the models have not overfit to the training set. However, the
best performing model appears to be DL-2, which has both
higher training and validation accuracies after 40 epochs.

Method | mloU on Training Set | mIoU on Val Set
DL-1 69.2 65.43
DL-2 70.97 67.29
DL-3 66.3 63.40
DL-4 64.8 59.69

DL-1* 77.95 72.53

Table 2: Training and Validation Set mean IoU scores for
DeepLabv3 Models. DL-1* corresponds to model DL-1
trained for 150 epochs.

Though we experimented with various ASPP layer ar-
chitectures, one potential reasoning for this is that with the
larger filter and dilation sizes no additional information was
added. This is because as the dilation increases in atrous
convolution, it can reduce the number of valid filter weights.
In other words, as the dilation increases then the number of
weights that are applied to valid features instead of padded
zeros decreases. An extreme example can be seen if a 3x3
filter is given a dilation size such that the resulting field of
view is the same size as the input window. In this case, it is
effectively performing the same function as a 1x1 filter, be-
cause the middle weight of the 3x3 is the only weight which
impacts a majority of the result.

As a result, there is a tradeoff between the amount of in-
formation captured in an atrous convolution and the number
of valid filter weights. This explains why the mean IoU is

lower for methods such as DL-4, because while the kernel
size is larger and should be capturing more information, it is
likely that with padding the weights are not properly learn-
ing values. Ideally the global average pooling will lower
the impact of having too large of a filter, but with the in-
put to the ASPP layer being 33x33, the dilation parameter
can not be too large. This is again seen in DL-4 because
the additional atrous convolution in the ASPP layer has too
large of a dilation parameter. However, since there are ad-
ditional parameters to train in both DL-3 and DL-4, another
possibility is that both models could eventually outperform
DL-1.

Given the small input window size of 33x33, it also
makes sense why DL-2 with an ASPP layer with dilations
of 3, 6, and 9 performed better than DL-1. By halving each
of the dilation values, we were still able to infer context (at
a smaller scale) and also ensured that more of the weights
affected each element of the convolution.

Although DL-2 had the largest mean IoU score after 40
epochs, we initially trained DL-1 for 150 epochs after first
implementing the original DeepLabv3 model. From this,
we received a mean IoU score of 72.53% for what is de-
noted as DL-1* in Tables 1 and 2. This score is 5% less than
the score reported in DeepLabv3 [L1]], but their method also
utilized data augmentation to increase their training set and
improve generalization.

5.6. Qualitative Results

Figure 5: Top Left: Input Validation Image. Top Right:
Ground Truth Fine Annotation. Bottom Left: SegNet
Model Output. Bottom Right: DL-1* Model Output

Figure 5 shows the large qualitative improvement DL-
1* had over our SegNet baseline when compared to the in-
put image and ground truth annotation. Though the color
correspondences are different between the ground truth and
our model output, it is clear that DL-1* properly identifies
pedestrians, bikes and traffic signs. Moreover, the edges
between different classes are smoother when compared to
the SegNet output for 7500 iterations. This means that our
quantitative analysis was in tune with the qualitative results.

It is important to notice that DL-1* does better on some
classes than on others. For instance, DL-1* completely ig-
nores the segmentation of the car on which the camera is
mounted.

Figure 6: Example of Errors in DL-1* Model Output. Left:
DL-1* Model Output. Right: Ground Truth Annotation

Figure 6 highlights additional qualitative errors in the
model prediction. Though DL-1* properly segments the
road and sidewalk from pedestrians, errors occur with par-
ticular edge cases like the stroller annotated in brown in
right image of Figure 6. Since there are likely not enough
cases with such classes in the training set, having this in the
validation set causes issues in the predicted output. In the
model output, pixels in the top half of the pedestrian push-
ing the stroller is incorrectly segmented as a biker, likely
due to the wheels on the stroller. The stroller itself is also
segmented as part of a bicycle but also as part of the road.

Lastly, certain classes with clear boundaries such as traf-
fic signs, poles, and traffic lights are not as finely defined
in the model output when compared to the ground truth an-
notation. A potential reason for this is because of the wide
range of the atrous convolutions, which can cause for small
objects with clear boundaries to not be as well outlined. A
potential next step to identify the cause of this issue would
be qualitatively evaluating these boundaries on the output
of the DL-2 model trained for 150 epochs, because it has
smaller dilation parameters.

6. Conclusion

In this paper, we present improvements to DeepLabv3 to
segment high level features in the Cityscapes dataset images
more accurately. We experiment with various tweaks to the
DeepLabv3 model including but not limited to adding more
Atrous Spatial Pyramid Pooling Layers and changing the
filter and dilation sizes. We then benchmark these results for
the mean IoU metric as provided in the Cityscapes dataset
and analyze the results we obtained for our changes to the
model.

Since time and computing resources were serious con-
straints, we were only able to train each of the variations of
DeepLabv3 models for no more than 40 epochs. Although
we observed vast improvements over our baseline model,
we would have hoped to run each of the models for more
epochs (closer to 150). Nevertheless, our experiments were
useful in bringing us closer to understanding the way to de-

rive feature maps that can be used to obtain global and fine-
grain features from images during semantic segmentation.

6.1. Future Considerations

A natural continuation to our work is running the train-
ing network for more epochs. In particular, given DL-2’s
better performance than DL-1 after 40 epochs, the next step
would be to also train DL-2 for 150 epochs and evaluate
its performance on the validation set. We plan on adding
more layers to the network with varying dilution and kernel
sizes to explore the relationship between a deeper network
and image segmentation results. We also plan to investi-
gate pre-processing the data with naive clustering methods,
as well as following similar data augmentation techniques
used in DeepLabv3. This could help the model learn global
features and filter out smaller anomalies.

Once we complete this aspect of the work, we would
want to implement a more sophisticated work that has been
proposed. For instance, we want to implement and experi-
ment DeepLabv3+, an extension of DeepLabv3 with an ad-
ditional decoder structure used to refine the segmentation
results. Similar to other encoder-decoder models discussed
earlier, this would help in our results, especially along ob-
ject boundaries. With this addition we would ideally see a
better validation mean IoU on the Cityscapes Dataset.

7. Contributions

Darren worked on the DeepLabv3 implementation and
tweaks to the architecture. Additionally, he worked on
quantitative analysis of the results and on generating quali-
tative results from Deeplabv3.

Aditya worked on the baseline model - understanding
the implementation of SegNet, training the model on the
Cityscapes dataset train set and evaluating and visualizing
results.

8. Acknowledgements

We would like to thank Cityscapes for providing an
exciting dataset and helpful benchmark tools (Cityscapes
Github Repo), as well as Pragnesh Shah for his SegNet
starter code (SegNet Github Repo). Additionally, we would
like to thank Chenxi Liu for his DeepLabv3 framework
(DeepLabv3 Github Repo).

References

[1] Shotton, J., Johnson, M., Cipolla, R. (2008, June).
Semantic text on forests for image categorization and
segmentation. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition (pp. 1-8). IEEE.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Teichmann, M. T., Cipolla, R. (2018). Convolu-
tional CRFs for semantic segmentation. arXiv preprint
arXiv:1805.04777.

Chen, L. C., Papandreou, G., Kokkinos, 1., Murphy,
K., Yuille, A. L. (2014). Semantic image segmenta-
tion with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062.

Long, J., Shelhamer, E., Darrell, T. (2015). Fully
convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition (pp. 3431-3440).

Everingham, M., Van Gool, L., Williams, C. K., Winn,
J., Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. International journal of com-
puter vision, 88(2), 303-338.

Liu, W, Rabinovich, A., Berg, A. C. (2015).
Parsenet: Looking wider to see better. arXiv preprint
arXiv:1506.04579.

Noh, H., Hong, S., Han, B. (2015). Learning deconvo-
lution network for semantic segmentation. In Proceed-
ings of the IEEE international conference on computer
vision (pp. 1520-1528).

Ronneberger, O., Fischer, P,, Brox, T. (2015, Octo-
ber). U-net: Convolutional networks for biomedical
image segmentation. In International Conference on
Medical image computing and computer-assisted in-
tervention (pp. 234-241). Springer, Cham.

Badrinarayanan, V., Kendall, A., Cipolla, R. (2017).
Segnet: A deep convolutional encoder-decoder ar-
chitecture for image segmentation. /EEE transactions

on pattern analysis and machine intelligence, 39(12),
2481-2495.

Zhao, H., Shi, J., Qi, X., Wang, X., lJia, J. (2017).
Pyramid scene parsing network. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (pp. 2881-2890).

Chen, L. C., Papandreou, G., Schroff, F., Adam,
H. (2017). Rethinking atrous convolution for
semantic image segmentation. arXiv preprint

arXiv:1706.05587.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., En-
zweiler, M., Benenson, R., ... Schiele, B. (2016).
The cityscapes dataset for semantic urban scene un-
derstanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 3213-
3223).

https://github.com/mcordts/cityscapesScripts
https://github.com/mcordts/cityscapesScripts
https://github.com/meetshah1995/pytorch-semseg
https://github.com/chenxi116/DeepLabv3.pytorch

[13]

[14]

(15]

(16]

Cordts, M. (2019). Cityscapes Benchmark Suite,
https://github.com/mcordts/cityscapesScripts

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (pp. 770-778).

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K,
Fei-Fei, L. (2009, June). Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition (pp. 248-
255). leee.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyan-
skiy, M., Tang, P. T. P. (2016). On large-batch train-
ing for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836.

